

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009

Formation of Diverse Mesophases Templated by Diprotic Anionic Surfactant

Chuanbo Gao,^[a] Yasuhiro Sakamoto,^[b] Osamu Terasaki,^[b] and Shunai Che*,^[a]

[a] School of Chemistry and Chemical Technology, State Key Laboratory of Composite Materials Shanghai Jiao Tong University, Shanghai 200240, China

> [b] Structural Chemistry, Arrhenius Laboratory Stockholm University, S-10691 Stockholm, Sweden

Supporting Information

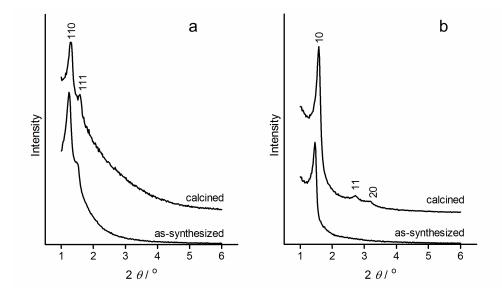


Figure S1. XRD patterns of mesoporous silicas having the space group of (a) bicontinuous cubic $Pn\overline{3}m$: C₁₄GluA/NaOH/TMAPS 0.200:0.100:0.700 and (b) 2d-hexagonal *p6mm*: C₁₄GluA/NaOH/ TMAPS 0.400:0.300:0.300.

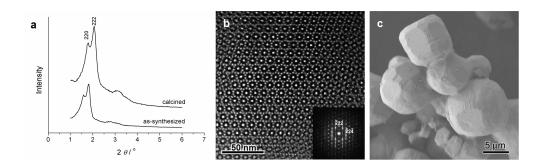


Figure S2. (a) XRD pattern, (b) HRTEM image and (c) SEM image of the cage-type mesoporous silica having the space group of cubic $Fd\overline{3}m$: C₁₄GluA/NaOH/TMAPS 0.284: 0.334: 0.382.

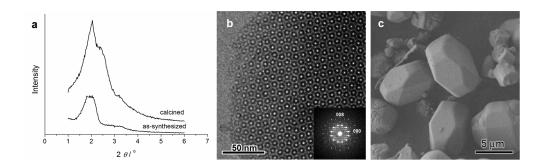


Figure S3. (a) XRD pattern, (b) HRTEM image and (c) SEM image of the cage-type mesoporous silica having the space group of tetragonal $P4_2/mnm$: C₁₄GluA/NaOH/TMAPS 0.267: 0417: 0.317.

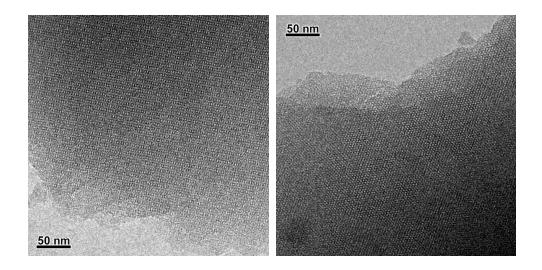


Figure S4. HRTEM images of the mesophase formed from the synthesis system of C_{14} GluA/NaOH/TMAPS 0.233:0.333:0.433.

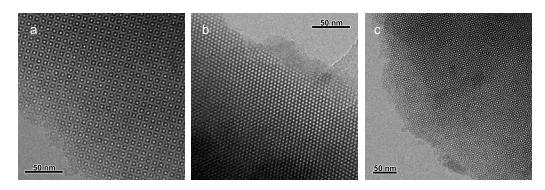


Figure S5. HRTEM images of the mesophase formed from the synthesis system of C₁₄GluA/NaOH/TMAPS 0.267:0.367:0.367. It shows a coexistence of cubic (a) $Pm\overline{3}n$, (b) $Fm\overline{3}m$ and (c) tetragonal $P4_2/mnm$.

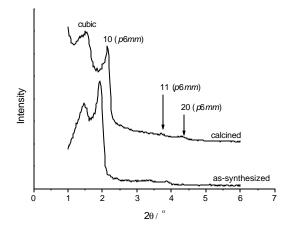


Figure S6 XRD pattern of the mesophase formed from the synthesis system of C_{14} GluA/NaOH/TMAPS 0.367:0.367:0.267. It shows a coexistence of cubic and 2d-hexagonal phases.

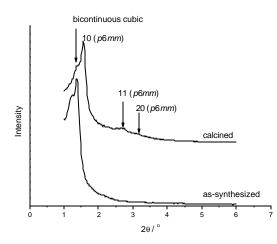


Figure S7. XRD pattern of the mesophase formed from the synthesis system of C_{14} GluA/NaOH/TMAPS 0.267:0.167:0.567. It shows a coexistence of bicontinuous cubic and 2d-hexagonal phases. See reference: C. Gao. Y. Sakamoto, O. Terasaki, K. Sakamoto, S. Che, *J. Mater. Chem.* **2007**, *17*, 3591.